Algebraic relaxations and hardness results in polynomial optimization and Lyapunov analysis

نویسنده

  • Amir Ali Ahmadi
چکیده

The contributions of the first half of this thesis are on the computational and algebraic aspects of convexity in polynomial optimization. We show that unless P=NP, there exists no polynomial time (or even pseudo-polynomial time) algorithm that can decide whether a multivariate polynomial of degree four (or higher even degree) is globally convex. This solves a problem that has been open since 1992 when N. Z. Shor asked for the complexity of deciding convexity for quartic polynomials. We also prove that deciding strict convexity, strong convexity, quasiconvexity, and pseudoconvexity of polynomials of even degree four or higher is strongly NP-hard. By contrast, we show that quasiconvexity and pseudoconvexity of odd degree polynomials can be decided in polynomial time. We then turn our attention to sos-convexity—an algebraic sum of squares (sos) based sufficient condition for polynomial convexity that can be efficiently checked with semidefinite programming. We show that three natural formulations for sos-convexity derived from relaxations on the definition of convexity, its first order characterization, and its second order characterization are equivalent. We present the first example of a convex polynomial that is not sos-convex. Our main result then is to prove that the cones of convex and sos-convex polynomials (resp. forms) in n variables and of degree d coincide if and only if n = 1 or d = 2 or (n, d) = (2, 4) (resp. n = 2 or d = 2 or (n, d) = (3, 4)). Although for disparate reasons, the remarkable outcome is that convex polynomials (resp. forms) are sosconvex exactly in cases where nonnegative polynomials (resp. forms) are sums of squares, as characterized by Hilbert in 1888. The contributions of the second half of this thesis are on the development

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hardness Results and Algebraic Relaxations for Control of Underactuated Robots

In this paper, we study the computational complexity of several important decision problems that arise in robotic control applications and provide algebraic relaxations for designing controllers for such tasks. First, we show that the following decision problems are strongly NP-hard: deciding local asymptotic stability of trigonometric vector fields of degree four, invariance of a ball for poly...

متن کامل

Stability of Polynomial Differential Equations: Complexity and Converse Lyapunov Questions

Stability analysis of polynomial differential equations is a central topic in nonlinear dynamics and control which in recent years has undergone major algorithmic developments due to advances in optimization theory. Notably, the last decade has seen a widespread interest in the use of sum of squares (sos) based semidefinite programs that can automatically find polynomial Lyapunov functions and ...

متن کامل

Semidefinite Programming vs. LP Relaxations for Polynomial Programming

We consider the global minimization of a multivariate polynomial on a semi-algebraic set defined with polynomial inequalities. We then compare two hierarchies of relaxations, namely, LP relaxations based on products of the original constraints, in the spirit of the RLT procedure of Sherali and Adams (1990), and recent semidefinite programming (SDP) relaxations introduced by the author. The comp...

متن کامل

Optimization, Stability and Cylindrical Decomposition

Some connections between constructive real algebraic geometry and constrained optimization are exploited. We show how the problem of determining the projection of a real-algebraic variety on a certain axis is equivalent to a problem in nonlinear programming. As an application, Grr obner bases are used to deal with an optimization problem arising in the theory of local Lyapunov functions. The pr...

متن کامل

Linear relaxations of polynomial positivity for polynomial Lyapunov function synthesis

We examine linear programming (LP) based relaxations for synthesizing polynomial Lyapunov functions to prove the stability of polynomial ODEs. Our approach starts from a desired parametric polynomial form of the polynomial Lyapunov function. Subsequently, we encode the positive-definiteness of the function, and the negation of its derivative, over the domain of interest. We first compare two cl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1201.2892  شماره 

صفحات  -

تاریخ انتشار 2011